MFE Programming Workshop Class 5

Rob Richmond December 3, 2015

UCLA Anderson

Any questions before we start?

- In general Matlab is faster when you use vectorized functions/operators instead of loops
- Many functions/operators are vectorized (they operate over individual elements)
- Lets look at last weeks lab

Lets go over some plotting facilities

• Functions in Matlab can be created inline for simple tasks using **බ**

Example

```
myfunc = @(x) exp(x^2);
myval = myfunc(1.1);
ans = myval
```

- \cdot Matlab has an entire toolbox dedicated to optimization
- Some possible uses are
 - Root finding: fzero, fsolve
 - Unconstrained optimization: fminunc
 - Constrained optimization: fmincom
 - Quadratic programing: quadprog

- $\cdot\,$ Lets look at an example of root finding
- Suppose we want x s.t. $5 e^{x^2} = x^2$
- We convert this to the root finding problem $5 e^{x^2} x^2 = 0$

Example

```
myfunc = @(x) 5-exp(x^2)-x^2;
myval = fsolve(myfunc,2)
ans = myval
```

- Basic statistics functions are labeled as you would expect: mean, var, etc.
- **cov** returns the covariance matrix of a matrix consisting of column vecotrs of observations
- removing **nan** values can be useful: **nanmean**, **nancov**